An immense catastrophe

On April 20, 2010, an explosion on the Deepwater Horizon oil rig caused the largest accidental spill in history. During the three months it took to be blocked, the leak released nearly 5 million barrels of oil.

With immeasurable effects

The extent of damage and effects of the spill are not known accurately even today, for a simple reason: we do not know Gulf conditions before the spill.

Oil exploration in the Gulf continues to increase

as do the risks and and uncertainty. And it is to alleviate this need to know that a group of academic institutions came together to form the Gulf of Mexico Research Consortium (CIGoM, for friends).
Logo del CIGoM

The CIGoM seeks to better understand the Gulf's currents and biogeochemical processes, the beings that inhabit it, how a spill affects them, and even, how to stop or reverse the damage (some bacterias like to eat oil!)

In the beginning...

The Gulf of Mexico Research Consortium (CIGoM) was founded in 2015 as a consortium of scientific research and consulting services. It specializes in multidisciplinary projects related to potential environmental impacts of the oil and gas industry, in the marine ecosystems of the Gulf of Mexico. This initiative arose from the shared ideas of a group of scientists and PEMEX's staff, due to the lack of information to understand and act in case of possible large scale oil spills in the Gulf of Mexico.

Who is CIGoM?

The core of the consortium is composed by a group of experienced personnel, specialized and trained, including more than

Researchers actively involved

 

From the most recognized research and education Mexican institutions:

Logo Ciencias de la Atmósfera UNAM
Logo IBT UNAM Logo Geofísica UNAM Logo Ciencias del Mar UNAM

 

Atlas de Línea Base Ambiental del Golfo de México

Les recordamos de la otra obra magna del CIGoM, el Atlas de Línea Base Ambiental del Golfo de México. Es una representación geográfica de las características físicas, químicas, biológicas y ecológicas del ecosistema que se centra principalmente en la Zona Económica...

Tres nuevos artículos de biodegradación

Muriel-Millan,L.F., Millan-Lopez,S., Pardo-Lopez,L. (2021). Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics. Applied Microbiology and Biotechnology, 13 September 2021 [online first]...

Biotechnological applications of marine bacteria in bioremediation of environments polluted with hydrocarbons and plastics

En esta revisión de la literatura actual, se esclarece el potencial de las bacterias para biodegradar hidrocarburos y plástico, limitaciones que previenen su aplicación, y posibles soluciones. Authors: Luis Felipe Muriel-Millán, Sofía Millán-López & Liliana...

Comparison of the fish functional arrangement of two contrasting localities in the Gulf of Mexico

Authors: Rosalía Aguilar-Medrano, María D. Blanqueto-Manzanero, María E. Vega-Cendejas https://doi.org/10.1111/maec.12680 Abstract A central objective of ecological research is to understand the causes and links of diversity. Trophic and morphological variation has...

The effect of benzo[a]pyrene on the gut microbiota of Nile tilapia (Oreochromis niloticus)

Authors: Mercedes Quintanilla-Mena, Julio Vega-Arreguin, Marcela Del Río-García, Victoria Patiño-Suárez, Santy Peraza-Echeverria & Carlos Puch-Hau https://doi.org/10.1007/s00253-021-11592-5 Abstract Benzo[a]pyrene (BaP) is a highly toxic and carcinogenic...
Logotipos CONACTY CIGoM SENER

CONACYT / Ministry of Energy's Hydrocarbons Fund Project

Currently the CIGoM develops the project “Implementación de redes de observación oceanográficas (físicas, geoquímicas, ecológicas) para la generación de escenarios ante posibles contingencias relacionadas a la exploración y producción de hidrocarburos en aguas profundas del Golfo de México”. This initiative is financed by the Hydrocarbons Fund of the National Council of Science and Technology and the Ministry of Energy. The Hydrocarbons Fund has decided to invest 1500 million pesos, to develop and have ready in 2020, the baseline of the Gulf of Mexico; a monitoring system of the ocean and the atmosphere –through buoys, HF radars, gliders and remote sensing; a thorough understanding of the Gulf of Mexico streams and the behavior of oil in the event of spills; state of the art on the natural degradation of hydrocarbons in the Gulf of Mexico; and an ability to determine spill scenarios and their potential effect on ecosystems. The project has been organized around these five lines of research:

Oceanographic observation platforms

Physical and chemical conditions are studied (as are currents, climate, salinity levels, oxygen, CO2, among others) by means of buoys, submarine gliders and remote sensors, which will allow us to establish an early warning system in the event of a spill.

Baseline and environmental monitoring

Oceanographic campaigns are carried out to collect samples and evaluate changes in the marine environment and the species that inhabit it, from microorganisms to cetaceans. This to be able to compare the effects of possible contingencies with the current state of the ecosystem.

Circulation models and biogeochemistry

Seeks to create simulations that help predict the dispersion and natural degradation of hydrocarbons in the event of a spill, by means of mathematical models.

Natural degradation of hydrocarbons

The oil-degrading potential of some bacteria is analyzed, as a mechanism to mitigate a spill.

Spill scenarios

The potential consequences of a spill are examined through numerical models coupled with observations and field experiments.

Oceanographic observation platforms

Led by Dr. Francisco Javier Ocampo Torres, are a system of in situ and remote measurements of the marine environment of the Gulf of Mexico. Among its uses is to provide information that can be used in the face of possible contingencies related to the exploration and production of hydrocarbons and other harmful substances in deep waters of the Gulf of Mexico.. This line of work includes various technologies such as Coastal Oceanographic Buoys (BOC), Oceanographic and Marine Meteorology Buoys (BOMM), Underwater Gliders (Gliders) and Remote Sensing (Radio escaterometers, radiometers and synthetic aperture radars).

Baseline and environmental monitoring

Under Dr. Sharon Herzka Llona, aims to establish a baseline of oceanographic , biogeochemical, key biological and ecological variables to assess impacts and design mitigation strategies in cases of large-scale spills, in the deep-water zone of the Gulf of Mexico. This objective will be achieved through the execution of oceanographic campaigns, the evaluation of the habitat use of species of importance for conservation such as sea turtles, cetaceans or larger pelagic fish, and monitoring of coastal ecosystems associated with seagrass beds.

Numerical models of circulation and Biogeochemistry

Led by Dr. Julio Sheinbaum Pardo, consists of integrating numerical circulation models with biogeochemical and ecological models within a system to examine the evolution, the destination and possible effects of significant oil spills, considering different scenarios (magnitude, locality, depth, seasonality, type of hydrocarbons) to generate risk maps and arrival times that can guide decision-making in the event of a real event.

Natural degradation of hydrocarbons

Led by Dr. Alexei Fedórovish Licea Navarro where the natural response capacity of the ecosystem to large-scale spills is studied, through the evaluation of physicochemical degradation capacity, microbiological and photochemical of different hydrocarbon fractions through studies under controlled and natural conditions. It is proposed to evaluate the microbiological degradation capacity of different Mexican crudes by the native microflora, through the application of remediation techniques.

Spill scenarios

Under Dr. Paula Pérez Brunius where the potential consequences of different oil spill scenarios are examined, considering the role of physical transport and dispersal processes on the destination of petroleum products in the western deep-water region of the Gulf of Mexico, and their potential impacts on the ecosystem at different temporal and spatial scales. The study will include field observations, as well as experiments and numerical simulations specifically designed for this purpose. There is a technological development component that includes an unmanned vehicle capable of throwing instruments adrift to mark a stain in the event of an accident..

Services

Environmental Baseline Studies & Compliance Services

Baseline studies to determine initial environmental conditions prior to operations. Oceanographic Monitoring (physical, biogeochemical and biological). Environmental Impact Assessment. Environmental Impact Statement (Under environmental Mexican law).

Hydroacoustics & Shallow Seismic Exploration

Spatial Planning | Survey Design| Field Data Collection. Data Interpretation and Management | 2D and 3D Visualization. Images and Characterization of Hydroacoustics Plumes.

Metocean Monitoring

Oceanographic Buoys | Deep Sea Moorings | Low-Cost Surface Drifters. HF & Marine Radars (construction and operation). Remote sensing (satellite and aerial tele detection). Unmanned aerial vehicle to launch ultra-compact surface drifters. Autonomous Underwater Vehicles (Gliders). Remote Operated Vehicles (ROV).

Circulation And Biogeochemical Numerical Models

Numerical modeling of Winds, waves, sea level and ocean current (forecasts and hind casts). Dispersion, transport and degradation of oil spills. Dispersion and transport of sediments, pollutants and objects. Applications to oil spill risk management..

Analysis Of Oil Spill Response Scenarios

In situ and laboratory experiments to measure the effect of oil on selected species . Vulnerability assessment.

Oil Degradation By Microbial Consortia

Bacterial Communities and Consortia Characterization by Metagenomics. Microbial Consortia. | Metagenomic libraries. Identification of Biosurfactants. Aerobic and Anaerobic Degradation of Petroleum Components by identification and characterization of industrially relevant enzymes. Detection and analysis of Sulfate Reducing Bacteria and Acid Producing bacteria.

Data Management & Visualization

Rigorous Data Analyses According to Strict Quality Assurance/Quality Control (QA / QC). Data Management for Complex, High-Volume, Multi-Source Datasets. Document Access and Electronic Content Management Services. Secure, Web-Based Visualization (geoportal) of Spatial Data and Information, seafloor images and video, and historical baseline data. Cartography (spatial analysis, modeling, and mapping). Mapping of small scale vulnerable deep sea habitats for conservation.

Marine Sciences

Marine Biology | Fisheries Ecology | Underwater Archeology. Oceanography | Ocean Geology. Coastal Zone and Environmental Management. Biological and Chemical Sample Collection. Scientific Consultancy and Training. Marine Vertebrates Monitoring (Mammals, Turtles and Pelagic Fishes). Marine Conservation | Deep Sea Conservation.

Marine Operations

Metocean | Gliders | Deep Sea Moorings. Full water column oceanographic data acquisition. Design, installation,and maintenance of tide and meteorological stations. Integration of instrumentation and sensors through buoy-based systems, data processing, web display, storage and dissemination software. Radar scatterometers | Photo and Video Documentation. Surface Sediment Collection and Characterization.

Postgraduate Programs

CICESE

Master's degree and Doctorate in Physical Oceanography, Marine Ecology and Life Sciences.

CINVESTAV

Master's degree in Marine Biology and Phd in Marine Sciences.

UABC

Master's degree and Doctorate in Coastal Oceanography.

UNAM

Master's and Doctorate in Marine Sciences and Limnology, Biochemical Sciences, Earth Sciences.

CIDESI

Master and Inter-Institutional Doctorate in Science and Technology.